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SUMMARY 

The use of finite element methods for turbulent boundary-layer flow is relatively recent and of limited extent.' 
In the present study, we extend the group variable approach of Fletcher and to treat turbulent 
boundary layer flows with heat transfer using a two-equation turbulence model. The main concepts in the 
formulations include a Dorodnitsyn-type transformation which uses a velocity component as the transverse 
variable, a 'variational' formulation for the transformed equations using special test functions and 
development of a two-equation turbulence model in terms of the turbulent kinetic energy and turbulence 
dissipation rate as additional field variables. Several numerical test cases have been examined comparing the 
results with finite difference calculations and comparing the two-equation turbulence model with an algebraic 
turbulence model. 
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INTRODUCTION 

For many flows of practical interest, the viscous effects are confined to regions immediately 
adjacent to solid surfaces. The finite element method has emerged as a viable alternative to the 
finite difference method for the solution of laminar and turbulent boundary layer equations. 
Lynn4 used a least-squares error criterion to formulate a finite element procedure for the analysis 
of steady, laminar boundary layer flows. Popinski and Baker' used the Galerkin formulation 
within the method of weighted residuals to cast the two-dimensional boundary layer equations 
into a standard finite element form. Subsequently, Soliman and Baker196, reported comprehensive 
numerical results describing accuracy and convergence performance for the finite element 
algorithm applied to laminar and turbulent boundary layer flow prediction. 

The above references have sought, for the two-dimensional incompressible laminar and 
turbulent boundary layer flows, the velocity components u and v as functions of x and y. In 
contrast, the Dorodnitsyn finite element algorithm adopted by Fletcher and treats the 
velocity component u as an independent variable rather than .a dependent variable. The 
Dorodnitsyn formulation is appealing for boundary layer computation since the domain in the y 
direction is replaced by a fixed finite domain in u. Whereas traditional boundary layer 
computational schemes require grading with a fine mesh in the near-wall region in order to obtain 
acceptable results, a uniform grid in u for the Dorodnitsyn formulation automatically provides 
high resolution (in physical space) close to the wall. 

In the present study, we extend the group variable and Dorodnitsyn finite element formulation 
to treat turbulent boundary layer flow with heat transfer and using a two-equation turbulence 
model. The resulting coupled system is solved iteratively. Numerical studies are conducted for 
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representative turbulent boundary layer flows. Both algebraic and two-equation turbulence 
models are considered, and comparison computations are made with finite difference calculations. 

GOVERNING EQUATIONS 

We consider steady, two-dimensional boundary-layer flows. The time-averaged equation of 
motion is of the form’ 

(1) 
au au due a [ 3 
ax ay dx ay u - + u - = u e - + -  (v+vT)- . 

In addition, conservation of mass implies 

au a0 

ax ay  
-+-=o. 

In equations (1) and (2), u and u represent the velocity components in the x and y co-ordinate 
directions, respectively; u, is the free-stream velocity, v is the kinematic viscosity and vT is the 
turbulent eddy diffusivity. 

For steady-state heat transfer in the fluid, the thermal energy equation has the following form: 

uE+uE=++aT)g], ax ay ay (3) 

where T is the temperature, a is the thermal diffusivity of the fluid and uT is the turbulent thermal 
diffusivity. 

The turbulent diffusivities vT and C I ~  are properties of the flow field and not of the fluid. If the flow 
is laminar, the turbulent flow contributions aT and vT in (3) and (1) are both zero. On the other hand, 
if the flow is turbulent, the variables u, u and Tare time-averaged quantities and are assumed to be 
independent of time. 

MIXING-LENGTH TURBULENCE MODEL 

The Prandtl mixing-length theory is one of several schemes which have been used to evaluate 
the effective turbulent viscosity, vT, in the calculation of turbulent boundary layer flows. In this 
model, the effective viscosity vT is expressed as a function of the time-averaged velocity field in 
the following way:’ 

(4) 

where 1 denotes the mixing-length and is a measure of the turbulent length scales in the fluid 
flow. The following correlation for 1, obtained on the basis of experimental data,8 is the most 
common form used in boundary layer computations: 

16 
[ky[l-exp( -$)I, O < Y < - ,  k 

I =  < 16 
Y ’ k .  

i .- 

In equation (9, k is the von Karman constant and 6 is the boundary layer thickness (the point 
where the fluid velocity u is 99 per cent of the free stream velocity u,). The experimental values 
of k and 1 are 0.41 and 0.085, respectively. The quantity A is an empirically determined effective 
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sublayer thickness. The empirical correlation described by Kays and Crawford' takes into 
account the effect of pressure gradients and wall transpiration on the sublayer thickness using 

where 

25.0 
u { u O +  + b[P+/(l +cu,')]} + 1-0' 

A +  = (7) 

In (7) a = 7.1, b = 4 .25 ,~  = 10.0, for P+ < 0,u; 0; if P+ =- 0, then b = 2.9 and c = 0.0; if 
u: < 0, then a = 9-0. Here uo denotes the velocity of the fluid injected in the normal direction 
through a porous wall. 

TWO-EQUATION MODEL OF TURBULENCE 

A popular starting point for higher-order models is the turbulent kinetic energy equation. 
The form of the two-equation, low-turbulence Reynolds number model used in the present 
investigation is described by Jones and L a ~ n d e r . ~  The equations describing turbulent kinetic 
energy K and dissipation rate are, respectively, 

and 

Equations (10) and (11) are based on the assumption that transport by diffusion proceeds at a 
rate proportional to the product of the turbulent viscosity and the gradient of the property in 
question (the terms oK and (T& thus have the significance of turbulent Prandtl numbers). To 
complete the specification of the model, the quantities C , ,  C,, cK and (T, must be prescribed. The 
values suggested by Jones and Launder on the basis of experimental data for C , ,  oK and (T& are 
1.45,l.O and 1.3, respectively. An empirical correlation is employed to evaluate C,: 

C ,  = 2.0~1.0 - 0.3 exp ( - R:) ] .  (12) 
The constitutive equation relating the turbulent viscosity vT to the turbulence kinetic energy 
and turbulence dissipation rate is 

where 

C, = 0.09 exp [ - 2 . q  1 + RT/50)]. (14) 
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EDDY DIFFUSIVITY FOR HEAT TRANSFER 

In order to make heat transfer calculations in turbulent boundary layers, it is necessary 
to evaluate the eddy diffusivity for heat transfer aT, so that the thermal energy equation can be 
solved for the temperature field. The concept of a turbulent Prandtl number for heat transfer, 
wherein a relationship is sought between aT and vT, is most commonly used in the evaluation 
of a T :  

An empirical correlation for the turbulent Prandtl number PIT, established by Kays and 
Crawford,’ has been used in the present investigation: 

where 

Pe, = (:) Pr. 

In equation (16), the values 0.2 and 0 8 6  for C and PrToD, respectively, have been observed to 
yield reasonable correlations. In equation (17), Pr represents the molecular Prandtl number of 
the fluid. The above correlation appears to fit the available experimental data reasonably well 
over the practical Prandtl number spectrum. 

DORODNITSYN BOUNDARY LAYER FORMULATION 

We extend the group variable and Dorodnitsyn finite element approach of Fletcher and 
to the present two-equation turbulence model with heat transfer. In the Dorodnitsyn formulation, 
we define 

c = x  and q = u e y  (1 8) 
and new velocity components 

u’ due u’ = u/u,, v’ = u/ue and w = due  + q-- 
ue d5 

to transform the governing equations (I ) ,  (3), (10) and (1 1). Using this transformation and, for 
notational convenience dropping the prime, we may introduce weight functions f (u’), d f (u’)/du 
in a weighted average of the momentum and continuity equation, integrate with respect to q 
and define z = 118 = au/aq to change the variable of integration from q to u, and obtain3 

$ J ~ u  f8du - ~0 f(0) + VT)z]dU. (20) 

Equation (20) is the Dorodnitsyn formulation for laminar and turbulent boundary layer flows. 
In equation (20), z and 8 are the dependent variables, and < and u are the independent variables. 
For laminar flows, vT is zero, and the effective viscosity is simply the kinematic viscosity v. For 
turbulent flows, the effective viscosity is the sum of the laminar component and the turbulent 
eddy diffusivity vT. 



TURBULENT BOUNDARY-LAYER ANALYSIS 773 

For the two-equation model, the governing equations (10) and (1  1) are transformed to the 
following equations (after dropping the prime and simplifying): 

Multiplying equations (21) and (22) by the weight function g(u) and integrating across the 
boundary layer, we have 

and 

Upon performing a standard integration by parts with respect to q, on the terms involving 
second derivatives of K and E the following expressions result: 

where 
al(q)= v + -  -= v + -  -, ( 2):; q ;)i; 
a&) = (Y + ?)$ = ue( v + 2):. 

By introducing equations (25) and (26) into the integral statements (23) and (24), respectively, 
and changing the variable of integration from q to u, 
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where 
au u' due 

w = due + q--. z = l/6 = - and 
all u e  d t  

Equations (29) and (30) represent the Dorodnitsyn formulation for the K--E  equations: K and E are 
the dependent variables, whereas and u are the independent variables. The free-stream boundary 
conditions require that &/ay and be zero at the edge of the layer. Hence, in equations (29) 
and (30) ~ ~ ( 1 )  = ~ ~ ( 1 )  = 0. Furthermore, the boundary terms can be completely eliminated from 
equations (29) and (30) by choosing a class of weight functions which satisfy the condition g(0) = 0. 

The Dorodnitsyn formulation transforms an infinite y domain to a fixed and finite u domain. 
This eliminates the need for readjusting the grid in order to accommodate the downstream 
boundary layer growth. Of greater importance is the fact that a uniform grid in the u direction 
provides high resolution close to the wall. 

FINITE ELEMENT FORMULATION 

The computational algorithm is greatly simplified by uncoupling the K-E equations from the 
momentum equation at each step in the < direction. The momentum solution z = l/6 = au/aq 
obtained at each 5 location is used in the solution of the parabolic and non-linear K-E equations. 

Fletcher and Fleet use a group variable formulation wherein a trial expansion is introduced for 
(v + vT)z in equation (20). The expansions introduced for O and (v + vT)z are 

M 

where 4Xu) are one-dimensional piecewise polynomial finite element basis functions in the 
transverse (u) co-ordinate direction. The additional factor (1 - u) is introduced to ensure that 
O +  co and Z-0 at the edge of the boundary layer. The group formulation in (33) implies that 
vT need only be evaluated at the grid points. To ensure that w and u do not appear explicitly 
in equation (20), the condition f(1) = 0 must be satisfied. Hence, the weight function from the 
Dorodnitsyn formulation has the following form 

f ( u )  = f i ( U )  = (1 - u)4i(u)* (34) 
Introducing the approximate expansions for 6 and z and the test function above into equation (20) 
results in a modified Galerkin finite element formulation. Evaluation of the various integrals in 
equation (20) generates the following semi-discrete system of ordinary differential equations: 
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where 

{' $j$iudu,Aij = {:[%(I - u) - $i $j(l + u) du, c.. = 1 I J  
0 

Bij = 1: [ g(1- u) - 4i - u) - $j du. 1 
Note that the dual prescription of both 8 and T prevents the relationship 8 = l / ~  from being 
satisfied except at the nodes where 8, = l / .cj .  

Based on the scheme described by Fletcher and Fleet,3 an implicit algorithm for the marching 
equation (35) is constructed as follows. Equation (35) is written as 

CCijA8$"+"= A<{wS("+')+(~ -w)S(")} ,  (37) 
i 

where 

1 du 
u, d< j i 

S = -2Z Aij8,  + u, C Bii(v + V = , ~ ) T ,  + 61iuo 

and 

d I i = 1  if i = l , O  if i # 1 .  

Next, S@+l)  is expanded as a function of 8,, about the known 5" level with 

where 

(40) Aey+ 1 )  = @ n +  1) - ey). 
In the above equations, the superscript n denotes the nth 'time step' in the < direction. The 
resulting implicit system of equations for At$"+ ') is 

I 

where 

The parameter o controls the 'degree of implicitness'-setting o = 0 gives 
an explicit marching scheme and o = 1 a 'fully implicit' method. For the step sizes A( used, 
values of o below 0.5 and 0.7 for laminar and turbulent flows, respectively, produced unstable 
numerical results. 

The matrix equation (41) is tridiagonal for linear elements and is block diagonal and 
pentadiagonal for quadratic elements. In the present method, equation (41) is solved for the 
solution at level (n + 1) without iteration within the 'time' step. 

The marching algorithm described above uses a variable-step scheme. The step size A( is 
adjusted on the basis of the parameter A@!+ ')/8$). If A8("+')/8$" W < (O.l)y, the step size is increased 
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by 50 per cent (as long as a maximum specified step size is not exceeded. If AO$+ ' ) / O $ )  > y ,  the step 
size is halved (provided a specified minimum step size is exceeded); tolerance y is specified. 

The Dorodnitsyn formulation automatically ensures that the boundary conditions are satisfied, 
and thus no boundary conditions need be explicitly enforced in the finite element system (41). 
Furthermore, the matrices in equation (36) may be evaluated 'once and for all', i.e. they need not be 
evaluated at each step in the 5 direction. When a solution to the thermal energy equation is also 
desired, the thermal solution is also taken into account in a modified criterion for choosing the step 
size A<. 

Trial solutions are introduced for u and E as 
M 

j= 1 
= C uj(<)4j(u) 

and 

where 
function in equations (29) and (30) has the form 

j (u )  are one-dimensional shape functions in the transverse direction (u). The weight 

gi(u) = 4i(U), (45) 
where g,(u) satisfies the condition gi(0) = 0. 

system of ordinary differential equations: 
Substitution of trial and test functions into equations (29) and (30) generates the following 

du . 1 -  
C A i j L =  - C [ B i j + u e C i j ] U j + U , 3 C i - - D i - 2 v u e E i ,  
j dE j ue 

where 

d 4 .  
Aij  = u4j4iOdu, B, = lo w 2 d i d u ,  s: 

and 

where 

(47) 

(48) 
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Note that in the above expression the approximate expansions for K and E are not explicitly 
indicated in the non-linear terms Ci, Di, E i ,  Qi, etc. Rather, an iterative scheme based on 
the successive approximation method is constructed wherein the non-linear equations for K and 
E are iteratively linearized within each 'time' step in the 5 direction. That is, the non-linear 
'source' vectors Ci, Di, Qi, etc., in equations (47) and (49) are evaluated at each iteration 
based on the solutions from the previous iteration. Furthermore, the terms involving vT use the 
turbulent viscosity obtained from the previous iteration. 

The marching algorithm for equations (46) and (48) in the < direction and also the iterative 
scheme used to solve the non-linear system of equations are described below. 

The systems of ordinary differential equations (46) and (48) are discretized in the (time-like) 
<-direction to obtain. 

and 

In the above equations, the index (n  + 1) denotes the current 5 location and (k + 1) denotes the 
current iteration level at time step (n  + 1). The momentum equation is uncoupled from the K-E 

equations at each 'time step', and the solution z = l/O = du/dq available from the momentum 
equation at the ( n  + 1)th step is used to solve the partial differential equations for K and E.  

At each step in the 5 direction, the K and E equations are solved using an iterative scheme. The 
non-linearity in the kinetic energy equation arises from the terms V , ( ~ U / ~ Y ) ~ ,  E and 2 v ( d ~ " ~ / d y ) ~  in 
the differential equation (10). Furthermore, the diffusion term d/dy{ [v + (vT/oK)] (d~ /dy)}  is also 
non-linear in nature. The turbulence dissipation rate equation also has similar non-linear terms. 
The non-linear contributions in equations (50) and (51) at the (k + 1)th iteration are evaluated on 
the basis of K ,  E and v T  calculated at the kth iteration. 

The successive approximation scheme involves the evaluation of the terms occurring in 
equations (50) and (51) and the solution of algebraic systems of equations to obtain the nodal point 
values K Y + ~ )  and E $ " + ' )  at each iteration. Within each iteration, the K and E equations are 
uncoupled, i.e. the turbulence kinetic energy equation is solved first to obtain I C ~ + ' . ~ + ' )  which in 
turn is used in the solution of the turbulence dissipation rate equation so that E ? + ' * ~ + ' )  may be 
obtained. The iterative scheme described above involves the solution of two algebraic systems of 
equations, for 'cj and e j ,  respectively, at each iteration. 

The turbulent viscosity vT is computed at the end of each iteration from 
c K ( ! + l . k + l ) 2  

,,(n+ l , k + l )  = P J 
TJ & ( n + l . k + l )  * 

J 
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In the above equation, vT,j  represents the turbulent viscosity at node pointj. The turbulent viscosity 
vT,! obtained at the end of each iteration may be under-relaxed to improve stability and covergence 
using 

where tl represents the relaxation factor. 

'T,j ( n + l , k ) = t l V ( n + l , k + l )  T , j  + ( I  - t l )v$ , ; l .k) ,  (53) 

The iterations are performed until the convergence criterion 

is satisfied. The tolerance level e used in the present investigation was low3. 
The Dorodnitsyn formulation for the momentum equation eliminates the normal velocity 

component, w, from the integral statement. However, w is required in the evaluation of K and E and 
can be determined in a post-processing calculation at  the end of each step by integrating the 
continuity equation (2) across the boundary layer. On transforming the variable of integration 
from q to u, the resulting equation is 

where wj represents the normal velocity at  the grid points and uo represents the normal velocity at  
the wall. 

Following a similar procedure to (23)-(29), the Dorodnitsyn formulation for the thermal energy 
equation becomes 

where q is the flux, p is density, c, is heat capacity, 
au u' due 

T = 110 = - and w = d u e  + q--. 
a? Me d5 

(57) 

The dependent variable in equation (56) is ?: whereas 5 and u are independent variables. The free- 
stream boundary condition at  the edge of the thermal boundary layer requires that a v a y  be zero. 
Hence, in equation (56), q(1) = 0. 

A finite element scheme and a marching algorithm can be constructed for equation (56) in a 
manner similar to that for the K--E equations. However, the linearized and uncoupled form of the 
thermal energy equation within each 'time step' greatly simplifies the computational scheme. 

We introduce the finite element expansion for temperature T 
M 

j =  1 
T =  1 Tj(O4j(u), (58) 

gi(U) = 4i(u). (59) 

where +j(u)  are one-dimensional shape functions. The weight function g(u) is again taken to be 

Substitution of (58) and (59) into the integral statement (56) produces a modified Galerkin finite 
element formulation. Evaluating the various integrals in equation (56), we generate the following 
system of ordinary differential equations: 
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where 

a I i = 1  if i = l ,  0 if i # 1  (61) 

A general implicit marching algorithm can be constructed from equation (60): 

where the index (n + 1) represents the 'time' level <("+I) ,  w is the parameter controlling the level of 
implicitness, and 

At each 'time' step, the solution z = l/O = au/aq is obtained from the solution of the momentum 
equation, and the turbulent viscosity vT is computed either from the mixing-length model or from 
the solution of the IC--E equations. The turbulent thermal diffusivity aT is then obtained from 
equation (15). 

Using the computed velocity field, the linear algebraic system of equations (63) can be 
constructed and solved to yield the temperature, TY+'),  at the grid points. If the temperature T,(<) 
at the wall is specified, this essential boundary condition can be introduced into the algebraic 
system of equation (63). On the other hand, if the wall heat flux qo(t)  is known, it can be specified as 
a natural boundary condition. 

Since the thermal energy equation and momentum equation may require different values of A t  
for stability, a 'time' stepping scheme which depends on both the velocity and temperature fields 
can be constructed. The criterion applied in the present formulation uses 

where qw represents the wall heat flux and 8, = au/aq at q = 0. If D < 0-ly, the step size A t  is 
increased by 50 per cent as long as it does not exceed the specified maximum step size. If > y ,  the 
step size A t  is halved so long as the minimum step size is exceeded. Numerical experiments indicate 
that values of the parameter y equal to 0.02 and 0-10 for turbulent flow and laminar flow 
computations, respectively, give stable solutions efficiently. 

NUMERICAL RESULTS 
Mixing-length turbulence model 

In this section, the solutions obtained with the Dorodnitsyn finite element formulation are 
compared with those obtained using a representative finite difference program STAN5" for the 
case of flow over a flat plate, both with and without blowing in the normal direction. Both 
computational schemes employed a mixing-length model to calculate the turbulent eddy viscosity. 
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The wall temperature To, free stream temperature T, and normal velocity at the wall oo were held 
constant in the downstream direction. Results were obtained for values of the blowing fraction 
F = (udu,) equal to + 0002,0, and - 0.002; F = - 0.002 corresponds to the suction through the 
wall, whereas F = 0002 corresponds to normal wall blowing. 

From a practical viewpoint, the skin friction coefficient C,, the shape factor H and Stanton 
number S t  are of interest. These parameters are defined as follows: 

S t  = - .aT/ / [u,(T, - T,)] aY y = o  

Graphs of C,, H and St with downstream position are shown in Figures 1-3. In each case, a 
uniform grid of 21 linear elements was used. The step size control parameter, y ,  and the degree of 
implicitness, o, were set at 0.02 and 0.70, respectively, as indicated earlier. It can be observed that 
the finite element results and those obtained using STAN5 show excellent agreement for all three 
blowing fractions. From Figures 1 and 3, it can be observed that blowing reduces the skin friction 
and Stanton number, whereas suction has the reverse effect. Experimental observations' indicate 
that wall blowing destabilizes the flow and promotes boundary layer separation, whereas suction 
inhibits boundary layer separation, and this is consistent with our numerical results. 

Turbulent flat plate flow 
I 1 I 1 I I 1 

>-==- _F=-0.002 --_- --a=-- - -- ---- 0.0027 

0.0028 

0.0025 1 4 
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Figure 1 .  Skin friction for different blowing fractions, F 
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Figure 3. Stanton number for different blowing fractions, F 
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Figure 4. Skin friction as a function of X-location 
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Two-equation turbulence model 

Solutions to the momentum boundary layer equation were obtained using the K-E model for 
the basic case of zero pressure gradient flow. The initial profiles for the turbulent kinetic energy 
K and dissipation rate E were constructed from the algebraic mixing-length scheme based on the 
procedure described by Soliman and Baker.' Figures 4 and 5 represent the variation in skin friction 
and shape factor with downstream position. It can be observed from Figures4 and 5 that the 
mixing-length model and the two-equation model agree closely with each other. Although the 
initial profiles specified for u and E predict the shape factor H accurately, the skin friction C, 
predicted in the far upstream section of the flow does not agree closely with that predicted by the 
mixing-length solution. This probably results from the inaccuracy involved in the initial profiles 
specified for K and E in the near-wall region. However, the two-equation model predicts the correct 
behaviour in C, after a few downstream steps. 

The velocity profile across the boundary layer at a particular x location (x = 2-5 m) is given in 
Figure 6. Also indicated here for qualitative comparison are the results obtained from the mixing- 
length model and the semi-empirical law-of-wall profile. The velocity profile obtained from the 
two-equation model exhibits excellent agreement with that obtained from the mixing-length 
model, verifying the model and implementation for standard flow problems. 

The Dorodnitsyn finite element scheme employing the u-E model requires a uniform grid of 30 
linear elements across the layer to generate adequate solutions. The behaviour of K across the 
boundary layer is graphed in Figure 7. Clearly, the solution to the turbulent kinetic energy 
equation in (x,y) co-ordinates would require a highly graded mesh with a large number of grid 
points in the near-wall region to capture suitably the rapid changes in K in this region. However, 
the turbulent kinetic energy profile in the transformed u-co-ordinate (Figure 8) exhibits a far 
smoother behaviour. This results in accurate solutions on coarse and uniform grids when the 

TURBULENT FLAT PLATE FLOW 
2 5 . 0 0 1  ' I I 1 

LOG( YPLUS) 

Figure 6. Comparison of velocity profiles across layer 
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Figure 7. Turbulent kinetic energy K across layer for 'physical' Y-co-ordinates 
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Figure 8. Turbulent kinetic energy across layer for transformed (I-co-ordinate 
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Figure 9. Turbulent dissipation rate E across layer for 'physical' Y-co-ordinates 
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Figure 10. Turbulent dissipation rate across layer for transformed U-co-ordinate 
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Dorodnitsyn finite element formulation is used. The turbulence dissipation rate E also exhibits 
a similar trend across the boundary layer (Figures 9 and 10). 

The Dorodnitsyn formulation employing the two-equation model required extremely small 
downstream steps Ax to generate stable solutions. This is due to the non-linearity and strong 
coupling between the K and E equations. Here, the downstream step sizes ranged from 0.6 x m 
to 0.15 x 10-2m for the two-equation model which can be compared with step sizes ranging 
from 0.4 x 10-3m to 0.14m for the algebraic mixing-length model. This is a severe practical 
limitation to design analysis based on the two-equation model. 

CONCLUDING REMARKS 

In this study, the problem of approximate analysis of laminar and turbulent boundary layer flows is 
considered. A formal development of the Dorodnitsyn formulation using finite elements and its 
extension to the two-equation model of turbulence has been given. The non-linear nature of the K - E  

equations in the two-equation model induces severe restrictions on the downstream step sizes in 
numerical solutions, which impose practical limitations on the scheme. However, a detailed 
description of the behaviour of turbulence kinetic energy and dissipation rate provide a greater 
insight into the phenomenon. 

The capability of the Dorodnitsyn formulation to capture gradients in the boundary layer leads 
to a computationally efficient finite element algorithm. The Dorodnitsyn scheme provides accurate 
results even on coarse grids and does not require graded meshes such as those needed by more 
standard numerical schemes.' 

NOMENCLATURE 

constant in the mixing-length model 
effective sublayer thickness in the mixing-length model 
constants in the mixing-length model 
constants in the two-equation model 
skin friction coefficient 
weight function 
wall blowing fraction 
weight function 
shape factor 
von Karman constant in the mixing-length model 
Prandtl's mixing length 
molecular Prandtl number 
turbulent Prandtl number for heat transfer 
Reynolds number of turbulence 
Stanton number 
temperature 
velocity components 
velocity of the fluid injected through the wall 

Greek symbols 

Gt thermal diffusivity 
GtT turbulent thermal diffusivity 
Y step size control parameter 
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A 
6 
E 

K 

increment 
boundary layer thickness 
rate of dissipation of turbulence energy 
turbulent kinetic energy 
constant in the mixing-length model 
kinematic viscosity 
turbulent viscosity 
density 
turbulent Prandtl numbers 
wall shear stress 
degree of implicitness 

Subscripts 

e 
0, w 

quantity evaluated at the free stream 
quantity evaluated at the wall 

Superscripts 

k iteration level 
n time step level 
+ quantity non-dimensionalized by means of p, T~ and p 
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